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Abstract

Evaluating two-terminal network reliability is a classical problem with numerous applications. Be-

cause this problem is #P-Complete, practical studies involving large systems commonly resort to approx-

imating or estimating system reliability rather than evaluating it exactly. Researchers have characterized

signatures, such as the destruction spectrum and survival signature, which summarize the system’s struc-

ture and give rise to procedures for evaluating or approximating network reliability. These procedures

are advantageous if the signature can be computed efficiently; however, computing the signature is chal-

lenging for complex systems. With this motivation, we consider the use of Monte Carlo (MC) simulation

to estimate the survival signature of a two-terminal network in which there are two classes of i.i.d. com-

ponents. In this setting, we prove that each MC replication to estimate the signature of a multi-class

system entails solving a multi-objective maximum capacity path problem. For the case of two classes

of components, we adapt a Dijkstra’s-like bi-objective shortest path algorithm from the literature for
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the purpose of solving the resulting bi-objective maximum capacity path problem. We perform compu-

tational experiments to compare our method’s efficiency against intuitive benchmark approaches. Our

computational results demonstrate that the bi-objective optimization approach consistently outperforms

the benchmark approaches, thereby enabling a larger number of MC replications and improved accuracy

of the reliability estimation. Furthermore, the efficiency gains versus benchmark approaches appear to

become more significant as the network increases in size.

Keywords: Survival signature, two-terminal reliability, network reliability, Monte Carlo simulation,

bi-objective optimization.

1 Introduction

In a network where some elements fail independently of the other components according to a known prob-

ability, the two-terminal reliability is the probability that there is at least one functional path between two

specified terminal nodes s and t. Evaluating the two-terminal (and the more general K-terminal) reliability

is a classical problem with applications in wired and wireless communication networks, electronic circuit

design, computer networks, and electrical power distribution, among other systems (Cook and Ramirez-

Marquez, 2007; Gebre and Ramirez-Marquez, 2007; Beichelt and Tittmann, 2012; Silva et al., 2015; Caşcaval

and Floria, 2017; Chakraborty et al., 2020). The problem is known to be #P-Complete in general (Valiant,

1979; Provan and Ball, 1983; Ball, 1986), and numerous exact and approximate methods have been proposed

to solve it. With the emergence of massive networked structures with thousands of components, efficient

algorithms for evaluating two-terminal network reliability remain an important research topic.

One attractive approach for evaluating or comparing the reliability of complex systems is to use signatures

such as the system signature (Samaniego, 1985), the destruction spectrum (D-spectrum) (Gertsbakh and

Shpungin, 2009), and the survival signature (Coolen and Coolen-Maturi, 2012). Loosely speaking, a signature

is a compact summary of the system’s structure (e.g., the network’s topology) that, if computed, enables

efficient evaluation or approximation of system reliability (e.g., the probability that s and t are connected).

Whereas the system signature requires assuming components are independent and identically distributed

(i.i.d.), the survival signature can be applied in cases where there are multiple classes of components and
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components in different classes are permitted to be non-identical.

Because computing signatures for network systems is itself computationally challenging, it is common to

estimate a signature using Monte Carlo (MC) and then use the MC signature estimate to produce an estimate

of network reliability. In this context, such a combined MC/signature approach is known to be advantageous

compared to estimating the system reliability directly using crude MC (i.e., in which the system’s state is

repeatedly evaluated after sampling each component’s time to failure). For instance, combined MC/signature

approaches have been shown to have bounded relative error (Gertsbakh et al., 2016) whereas crude MC may

have unbounded relative error (Elperin et al., 1991). Nonetheless, computing signatures poses a major

challenge in terms of computational complexity, especially when considering large, heterogeneous networks.

In this paper, we consider the problem of estimating the two-terminal survival signature by MC simulation

for a system with two classes of unreliable nodes. The contributions are as follows:

1. We show that each MC replication entails solving a multi-objective maximum capacity path problem.

To the best of our knowledge, this is the first work to point out the relationship between survival

signature computation and a multi-objective optimization problem.

2. We adapt the Dijkstra’s-like algorithm of Sedeño-Noda and Colebrook (2019) to solve the resulting

bi-objective maximum capacity path problem for a system with two classes of components.

3. We show through numerical experiments that (i) the bi-objective optimization approach consistently

outperforms benchmark approaches, thereby increasing the rate at which MC replications can be

performed and improving the accuracy of reliability estimation; and (ii) the efficiency gains become

more significant as the network increases in size.

The remainder of this paper is organized as follows. In section 2 we summarize literature related to

the two-terminal reliability problem and algorithms proposed to solve it. In section 3, we present an MC

framework for estimating the two-terminal survival signature of a network system with two component classes

and describe methods for completing the calculations within a MC replication. We discuss computational

results in section 4 and conclude in section 5.
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2 Background and Literature Review

In this section, we summarize the relevant literature, beginning with a discussion of methodologies that

have been used to evaluate two-terminal reliability either exactly or approximately. We then provide a brief

review of signatures, their relationship, and their applications on reliability estimation and evaluation. We

close the section by discussing other closely related works.

2.1 Evaluating Two-Terminal Network Reliability

Many exact approaches to solve the two-terminal reliability problem have been proposed since the late 1950s.

We refer the reader to Moore and Shannon (1956) and Barlow and Proschan (1965), for a summary of early

research in this area and to Brown et al. (2020) for a general view of more recent results. Although exact

algorithms have proven effective for small networks or networks with special structures, such as trees or

series-parallel, approximation algorithms are more commonly used for large, generally structured networks.

The most common approaches used to evaluate two-terminal reliability (and its generalizations, e.g.,

K-terminal reliability and multi-state two-terminal reliability) exactly are based on methods such as sum

of disjoint products (Jane and Yuan, 2001; Datta and Goyal, 2017; Caşcaval and Floria, 2017), state-space

decomposition (Doulliez and Jamoulle, 1972; Aven, 1985; Alexopoulos, 1995; Bai et al., 2018), cut/path-

based state enumerations (Ramirez-Marquez et al., 2006; Gebre and Ramirez-Marquez, 2007), factoring

(Moskowitz, 1958; Satyanarayana and Chang, 1983; Wood, 1985, 1986; Burgos and Amoza, 2016), and

binary decision diagrams (BDD) (Lin et al., 2003; Hardy et al., 2007; Kuo et al., 2007). The exponential

nature of these algorithms has prompted research into computationally efficient bounds (Jane et al., 2009;

Lê et al., 2013; Sebastio et al., 2014; Silva et al., 2015) and other methods for estimating or approximating

two-terminal reliability based upon neural networks (Srivaree-ratana et al., 2002; Altiparmak et al., 2009),

network reduction procedures (Zhang and Shao, 2018), the cross-entropy method (Hui et al., 2005), failure

frequency approximation (Heidarzadeh et al., 2018), and spline interpolation (Cristescu and Dragoi, 2021).

MC simulation has been widely utilized for estimating two-terminal reliability since the 1980s. Fish-

man (1986) evaluated four MC sampling methods to estimate two-terminal reliability: (1) dagger sampling,

which relies on inducing negative correlations between the replications’ outcome; (2) sequential destruc-
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tion/construction based on permutations of the network elements; (3) bounds on the reliability; and (4)

failure sets enumeration, pointing out each method’s advantages and pitfalls.

Ramirez-Marquez and Coit (2005) propose a MC method to estimate the two-terminal reliability of a

multi-state network, i.e., where the network components can be in multiple states of performance as opposed

to (only) failed or functional. Their method employs MC simulation to generate system state vectors, which

are then compared to the set of multi-state minimum cut vectors to determine whether the system state

vector achieves the demand level required. Their method is specialized in (Cook and Ramirez-Marquez,

2007) to leverage the specific features of mobile ad hoc wireless networks.

Ramirez-Marquez and Gebre (2007) present an MC method to approximate bounds on the two-terminal

reliability of capacitated networks. The method is based on simulating network configurations, evaluat-

ing these configurations using exact methods, generating corresponding classification trees, and obtaining

minimal cut or path vectors from the classification trees.

Stern et al. (2017) combines MC simulation and machine learning techniques to approximate two-terminal

reliability. Their method relies on MC simulation to generate components’ failure samples, which are used

to estimate the two-terminal reliability. Support vector machine and logistic regression based on surrogate

models of node connectivity are applied within the MC method to reduce its runtime.

In recent years, researchers have combined MC simulation principles with the concept of a system signa-

ture to create improved methods for estimating the two-terminal reliability of complex systems. Two such

methods are presented in Reed et al. (2019) and Behrensdorf et al. (2021). We discuss these methods in

more details later in this paper, but first we introduce the concept of a system signature.

2.2 Signatures

To formally introduce the concept of signatures, consider a system in n components and let x be the state

vector whose elements are

xi =


1, if component i operates,

0, if component i has failed,
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and suppose the system’s structure function Ψ is defined by

Ψ(x1, x2, . . . , xn) =


1, if the system operates,

0, if the system has failed.

(1)

2.2.1 System Signature

The notion of a system signature was introduced by Samaniego (1985) for coherent systems composed of n

binary components. Under the assumption of coherence and i.i.d. component lifetimes, the system signature

s is an n-vector whose ith element si (i = 1, 2, . . . , n) is the probability that the ith component failure

causes the system to fail. The signature vector s does not depend on the common lifetime distribution of the

components and is, therefore, a measure of the system design (Samaniego, 1985; Navarro et al., 2008, 2011).

The computation of si is based on permutations of the components’ failure times. Under the i.i.d.

lifetimes assumption, the n! permutations of (1, 2, . . . , n) are equally likely outcomes of the order in which

components fail. Hence, we can (in theory) generate all n! permutations and assess for each permutation

how many failures are needed to cause the system to fail. Then, si is the proportion of permutations in

which the ith failure causes the system’s failure.

Given the system signature, the reliability of the system can be calculated by

P{T > τ} =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
[F (τ)]j [1− F (τ)]n−j , (2)

where T is the system lifetime and F (τ) is the common lifetime CDF of components i = 1, . . . , n (Samaniego

and Navarro, 2016). The system signature is closely related to the destruction spectrum (Gertsbakh and

Shpungin, 2009, 2011; Gertsbakh et al., 2018) and has been used extensively in applications such as compar-

ison of coherent systems (Navarro et al., 2008; Samaniego and Navarro, 2016; Kochar et al., 1999), lifetime

estimation (Shpungin, 2007a), analysis of queueing systems (Andronov et al., 2011), reliability comparison

of new and used systems (Samaniego et al., 2009), analysis of failure development in connected networks

(Gertsbakh and Shpungin, 2012), and evaluation of systems under minimal repair (Lindqvist and Samaniego,

2015).
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Shaked and Suarez-Llorens (2003) compute the signatures of all coherent systems with 2, 3, and 4 compo-

nents. Navarro and Rubio (2009) present a minimal path set algorithm to obtain all n-component coherent

systems and compute their signatures. Although their algorithm was applied to obtain the signatures of

all 5-component coherent systems, the algorithm’s run time grows exponentially and therefore cannot han-

dle large systems. Da et al. (2012) and Da et al. (2018) propose methods for computing the signature

of specially structured systems, e.g., systems composed of smaller disjoint subsystems or subsystems with

shared components. Yi and Cui (2018) propose a Markov process method to compute the system signa-

ture of some coherent, consecutive-type systems, but they note that their method may not handle large,

generally-structured systems.

For large, generally-structured systems, the combinatorial difficulty in obtaining the exact system signa-

ture/destruction spectrum has prompted researchers to focus on estimating methods based on MC simulation;

see, for instance, Gertsbakh and Shpungin (2004); Shpungin (2007a,b); Gertsbakh et al. (2011, 2016).

2.2.2 Survival Signature

The survival signature, introduced by Coolen and Coolen-Maturi (2012), extends the system signature to

the case of independent but not identically distributed component lifetimes while still isolating the system

structure’s contribution to reliability (Samaniego and Navarro, 2016).

We first define the survival signature for the i.i.d. case. Let the survival signature ϕ(l), for l = 0, . . . , n,

denote the probability that the system functions if exactly l of its components function, and define Φ as the

(n+ 1)-vector whose entries are ϕ(l), l = 0, . . . , n. Let Sl denote the set of state vectors in which xi = 1 for

exactly l components, and observe that |Sl| =
(
n
l

)
. Because the components are i.i.d., all vectors in Sl are

equally likely, and therefore

ϕ(l) =

(
n

l

)−1 ∑
x∈Sl

Ψ(x), l = 0, 1, . . . , n, (3)

as shown by Coolen and Coolen-Maturi (2012). It is straightforward to show (see Coolen and Coolen-Maturi

(2012)) that the survival signature and the system signature satisfy the relationship

ϕ(l) =

n∑
j=n−l+1

sj , l = 0, 1, . . . , n. (4)
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The right-hand side of Equation (4) denotes the probability that at least (n− l+ 1) component failures are

required for the system to fail, which is equal to the probability that the system functions when exactly l

components function, i.e., the left-hand side of Equation (4).

Although the survival signature can be applied to systems with i.i.d. components, its fundamental con-

tribution is the generalization of the theory of signatures to system with multiple classes of components.

Following Coolen and Coolen-Maturi (2012), consider a system with K ≥ 2 classes of components, where

components of the same class have i.i.d. failure times and failure times of components of different classes

are independent but not identically distributed. Let nk denote the number of components of class k, where

the nk-values satisfy
∑K

k=1 nk = n. Let x = (x1,x2, . . . ,xK) denote the state vector, where the subvectors

xk = (xk
1 , x

k
2 , . . . , x

k
nk
) represent the states of the components of class k.

Let ϕ(l1, l2, . . . , lK) denote the probability that a system functions if exactly lk ∈ {0, 1, . . . , nk} of its

class-k components function for each k ∈ {1, 2, . . . ,K}. For K > 1, let Φ denote the generalized survival

signature, which is aK-dimensional matrix whose entries are ϕ(l1, l2, . . . , lK) for all the values of l1, l2, . . . , lK .

In what follows, we provide a mathematical characterization of the generalized survival signature and express

its relation to system reliability.

For k ∈ {1, 2, . . . ,K}, let Sk
l ⊆ {0, 1}nk denote the set of class-k state vectors xk satisfying

∑nk

i=k x
k
i =

lk, and observe that |Sk
l | =

(
nk

lk

)
. Let Sl ⊆ {0, 1}n denote the set of whole-system state vectors x =

(x1,x2, . . . ,xk) satisfying xk ∈ Sk
l for all k ∈ {1, 2, . . . ,K}. Given that components of class k have i.i.d.

failure times, all state vectors xk ∈ Sk
l are equally likely and therefore

ϕ(l1, l2, . . . , lK) =

[
K∏

k=1

(
nk

lk

)−1
]
×

∑
x∈Sl

Ψ(x). (5)

Given the survival signature Φ, Coolen and Coolen-Maturi (2012) showed that

P{T > τ} =
n1∑

l1=0

· · ·
nK∑

lK=0

[
ϕ(l1, . . . , lK)

K∏
k=1

((
nk

lk

)
[Fk(τ)]

nk−lk [1− Fk(τ)]
lk

)]
, (6)

where Fk(τ) denotes the time-to-failure CDF for components of class k ∈ {1, 2, . . . ,K}. Computing Equa-

tion (6) is challenging because it requires evaluating all
∏K

k=1(nk + 1) elements of Φ.
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Some notable developments of the theory of survival signature are summarized next. In Coolen et al.

(2014), the authors used the survival signature in nonparametric predictive inference for system reliability.

Aslett et al. (2015) applied the survival signature with Bayesian inference for system reliability quantification.

Najem and Coolen (2018) employed the survival signature to study system reliability when failed components

can be replaced by functioning components of the same class already in the system. Eryilmaz et al. (2018)

presented general results for coherent systems with multiple classes of dependent components, and Coolen-

Maturi et al. (2021) introduced a joint survival signature for multiple systems with multiple classes of

components and with shared components between systems. Kelkinnama and Eryilmaz (2023) considered

coherent systems composed of different types of components that are monitored at one or two inspection

times, and employed survival signatures to obtain dynamic reliability measures, e.g., mean residual live

and mean inactive times. Eryilmaz and Tuncel (2016) generalized the survival signature to unrepairable

homogeneous multi-state systems with multi-state components, and Yi et al. (2022) considered a variety

of types of multi-state module systems, such as series, parallel, or recurrent structures, and derived their

multi-state survival signatures in terms of the survival signatures of its modules.

Nonetheless, computing the survival signature for complex systems poses a major challenge. With this

motivation, recent studies have focused on developing methods to compute or approximate the survival

signature to evaluate the reliability of complex systems. Reed (2017) propose an exact algorithm combining

dynamic programming and BDD to compute the survival signature of systems with multiple classes of

components. This method was extended by Reed et al. (2019) for the purpose of computing the K-terminal

survival signature of undirected networks with unreliable edges. Although efficient for small- and medium-

sized systems, these algorithms may not be suitable for large-scale systems due to large memory requirements

associated with the BDD system representation. For example, Reed et al. (2019) reported that the algorithm

was unable to compute the two-terminal survival signature of a 12 × 12 grid system with 144 vertices, 264

edges, and two classes of components due to memory requirements (RAM). Xu et al. (2019) introduce

an alternative method to compute the survival signature based on reliability block diagram and universal

generating function. Their method computes the u-function of components connected in series, parallel, or

bridge system through composition operators and then computes the survival signature from the reliability
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block diagram of the overall system. The method is limited due to large memory requirements and applied

only to small networks with at most 21 components.

The literature on estimation methods for the survival signature is also in its infancy, but has received

considerable attention in recent years. Behrensdorf et al. (2021) propose an approximation method that

combines percolation theory and MC simulation. The authors applied this method to realistic networks such

as the Berlin metro system network, which consists of 306 nodes divided into two classes and 350 edges.

Already for this relatively small and sparse network, the method shows some difficulty as its algorithm takes

over 27 hours (using 64 threads on an AMD Ryzen Threaddripper 3990X 64-Core Processor) to estimate

the survival signature based on 1e4 samples. Behrensdorf et al. (2021) report the limitations of the method

for larger and more complex network and suggest applying advanced MC methods to reduce the number

of samples needed. More recently, Di Maio et al. (2023) propose a survival signature estimation method

based on a combination of percolation theory with entropy-driven MC simulation. The efficiency of the

method over a crude MC methods is attested through computational experiments with small networks, but

the authors point out that the method may not be suited for larger networks. Lastly, whereas estimating the

survival signature is the focus of the research described above (in this paragraph), MC simulation has also

been applied as a means of estimating system reliability given the survival signature (Patelli et al., 2017).

2.3 Other Closed Related Work

Our work builds upon prior works that have utilized an optimization subroutine in the context of evaluating

network reliability by MC simulation. The work of Elperin et al. (1991) shows that MC replications for

evaluating K-terminal reliability can be completed by solving a maximum-capacity spanning tree problem

(using, e.g., Kruskal’s algorithm). More recently, Boardman and Sullivan (2021) utilize MC simulation to

evaluate the system signature with respect to reliability of guaranteeing a minimum number nodes remain

connected to a designated sink node, and they show that MC replications can be performed by solving a

one-to-all maximum-capacity path problem (using Dijkstra’s algorithm). To our knowledge, no prior works

have used optimization subroutines for the purpose of evaluating a system’s survival signature.
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3 Estimating the Two-terminal Survival Signature

Consider a directed network G = (N ,A) with node set N , where |N | = n, and arc set A, where |A| = m,

and let Γ−
i = {j ∈ N : (j, i) ∈ A} and Γ+

i = {j ∈ N : (i, j) ∈ A} denote, respectively, the set of predecessors

and successors of node i ∈ N . We assume binary-state nodes, which fail according to a specified probability

distribution. We assume arcs are perfectly reliable; however, the case of unreliable arcs and/or undirected

edges can be accommodated by standard network transformations. We further assume the terminal nodes s

and t cannot fail and their connectivity determines the state of the network, that is, the network is operational

whenever there is a functional path from s to t and the network is failed when all the s-t paths have failed.

The non-terminal nodes N \ {s, t} consist of two classes of nodes where nodes within each class share a

common time-to-failure distribution. Let Ne denote the subset of nodes in class e ∈ {1, 2}, i.e., such that

N \{s, t} = N1∪N2. We define ne = |Ne| as the number of nodes in class e ∈ {1, 2} and we assume n1 ≤ n2

without loss of generality. Let Fe(t) be the common time-to-failure CDF of nodes in class e, and assume

each node’s time to failure is independent of any other nodes’ time to failure.

For convenience, we recall the definition of the generalized survival signature for the case in hand. Here,

the value ϕ(l1, l2) represents the probability that s is connected to t by a path of functioning nodes given

that exactly l1 nodes from N1 and l2 nodes from N2 are functioning. The survival signature Φ is the

(n1 + 1)× (n2 + 1) matrix whose entries are ϕ(l1, l2) for l1 = 0, 1, . . . , n1, and l2 = 0, 1, . . . , n2. We assume

both that ϕ(0, 0) = 0, that is, the network is failed when all nodes are failed, and that ϕ(n1, n2) = 1, that is,

the network is functioning when all nodes are functioning. Additionally, we observe that this system cannot

be deteriorated by changing a node from failed to functioning; thus, the network is a coherent system.

Given Φ, the two-terminal reliability at time τ > 0 can be obtained through Equation (6) as

P{T > τ} =
n1∑

l1=0

n2∑
l2=0

[
ϕ(l1, l2)

2∏
k=1

((
nk

lk

)
[Fk(τ)]

nk−lk [1− Fk(τ)]
lk

)]
. (7)

The main difficulty in this approach lies in obtaining the values of ϕ(l1, l2) for every combination of l1 and l2.

We analyze four methods to estimate ϕ(l1, l2), l1 = 0, 1, . . . , n1, l2 = 0, 1, . . . , n2, by using MC simulation.

The methods, summarized in following subsections, differ only in how computations are performed within a
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MC replication. First, we summarize the common MC simulation framework of the methods.

Since nodes within the same class (N1 or N2) are equally likely to fail in any order, each of the n1!

permutations of nodes in N1 are equally likely outcomes of the order of node failures, and similarly, there are

n2! equally likely outcomes of the order of node failure in N2. Thus, in each replication we independently

generate a random permutation of failure times for all nodes in N1 and all nodes in N2. From each pair of

simulated permutations, we extract a state vector corresponding to each pair (l1, l2) with l1 = 0, 1, 2, . . . , n1

and l2 = 0, 1, 2, . . . , n2, and assess the structure function for every one of the state vectors formed. For every

pair (l1, l2), we count the number of state vectors for which the network is UP and divide this number by

the number of replications generated, which gives the estimate of ϕ(l1, l2). For a given replication, let

q1i = k if i ∈ N1 is the kth node to fail in N1, and

q2i = k if i ∈ N2 is the kth node to fail in N2.

(8)

For l1 = 0, . . . , n1 and l2 = 0, . . . , n2, define x(l1, l2) such that components i ∈ N1 are UP if q1i > n1− l1 and

DOWN otherwise, and similarly components i ∈ N2 are UP if q2i > n2 − l2 and DOWN otherwise. Thus, the

state vector x(l1, l2) represents the case where the last l1 components in the sampled permutation of N1 and

the last l2 components in the sampled permutation of N2 are UP, and all remaining components are DOWN.

Following the above procedure, each MC replication j = 1, . . . ,M yields a state vector xj(l1, l2) for

every pair (l1, l2). In replication j, we evaluate Ψ(xj(l1, l2)) for all l1 = 0, . . . , n1 and l2 = 0, . . . , n2, where

Ψ(xj(l1, l2)) = 1 if there exists a path of functioning nodes from s to t in state xj(l1, l2), and Ψ(xj(l1, l2)) = 0

otherwise. Hereafter, we refer to the collection Ψ(xj(l1, l2)), l1 = 0, 1, . . . , n1; l2 = 0, 1, . . . , n2, as the system

state matrix for replication j. After completing M MC replications, we estimate ϕ(l1, l2) by

ϕ(l1, l2) =

∑M
j=1 Ψ(xj(l1, l2))

M
. (9)

In what follows, we first present an intuitive approach (hereafter referred to as the Naive approach), based

on breadth-first search (BFS), for evaluating the system state matrix in each replication. Then, we discuss

the incremental search approach, which improves upon the naive algorithm by leveraging the nondecreasing
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nature of the structure function of coherent systems in order to avoid performing redundant searches. The

third method is an extension of the method of Boardman and Sullivan (2021), and hence we call it the single-

objective optimization approach. The last method, called the bi-objective optimization approach, is based on

solving a bi-objective maximum capacity path problem at every replication and is our main contribution.

3.1 Naive Approach

The Naive approach is summarized in Algorithm 1. In this approach, the value of Ψ(xj(l1, l2)) is evaluated

for each l1 = 0, 1, . . . , n1 and l2 = 0, 1, . . . , n2 by performing BFS (see, e.g., Ahuja et al. (1993)); that is, BFS

is run a total of M× (n1 + 1)× (n2 + 1) times. Because each BFS has O(m) time complexity, the resulting

complexity of the MC algorithm is O(n1n2mM).

Algorithm 1: Naive

1 Φ← 0
2 for j = 1 to M do
3 ▷ Generate a permutation of N1 and a permutation of N2

4 ▷ Represent the permutations according to Equation (8)
5 ▷ Turn DOWN q1i for i = 1, . . . , n1, and q2i , for i = 1, . . . , n2

6 for l1 = 0 to n1 do
7 for l2 = 0 to n2 do
8 ▷ Run a BFS from node s
9 if the BFS reaches t then

10 ϕ(l1, l2) ← ϕ(l1, l2) + 1
11 end
12 ▷ Turn q2n2−l2

UP

13 end
14 ▷ Turn q1n1−l1

UP

15 end

16 end

17 Φ← 1
MΦ

18 return Φ

3.2 Incremental Search Approach

The incremental search (IS) method exploits the fact that xj(l1, l2) and xj(l1, l2 + 1) are identical except for

the addition of the node q2n2−l2
. Using this property, IS computes an entire row of the system state matrix

(i.e., Ψ(xj(l1,−)) for a given value l1) in the same worst-case time required to evaluate a single element of
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the system state matrix in Naive. We explain this approach in the following paragraph.

For fixed l1, steps 7–13 of Algorithm 1 compute the row Ψ(xj(l1,−)) by running BFS n2 +1 times. The

IS method is identical to Algorithm 1 with the exception that we do not re-initialize BFS for (l1, l2) with

l2 > 1; rather, we update the search from (l1, l2 − 1) to include the new node that was turned UP in N2.

The update can be done by checking whether the new node contains an incoming arc from any of the nodes

already marked in the search. If so, we add the new UP node to the list of nodes to explore and continue the

search as if the referred node had been encountered in the original search. For fixed l1, this modified search

algorithm encounters each arc a constant number of times. To see this, observe that the predecessor list Γ−
i

of each node i is scanned at most once (i.e., after the node i is turned UP) and the successor list Γ+
i is also

scanned at most once (i.e., after the node i is marked). The work required in each replication is therefore

O(n1m), and the worst-case complexity of IS is O(n1mM).

3.3 Single-Objective Optimization Approach

Although IS is more efficient than Naive in that the first avoid performing many of the redundant steps

performed by the latter, both approaches follow the same principle. They both compute a row of the system

state matrix by adding nodes, according to the permutation of N2, until the network is connected. The

single-objective optimization approach (SO) is based on a different idea; that of solving an optimization

problem in order to directly determine how many nodes must be removed, according to the permutation of

N2, to disconnect the network assuming that all nodes in N2 are operational at the beginning.

In SO, we extend the work of Boardman and Sullivan (2021) by solving an optimization problem for each

value of l1 to find the corresponding value of l2 for which the network fails. We now explain the main ideas.

Consider Algorithm 1 again, and suppose we fix the value of l1 in the jth replication. In place of steps

7–13, we need only to identify the maximum value of l2, l
∗
2, for which Ψ(xj(l1, l2)) = 0. Once l∗2 is obtained,

we have

Ψ(xj(l1, 0)) = Ψ(xj(l1, 1)) = · · · = Ψ(xj(l1, l
∗
2)) = 0, and

Ψ(xj(l1, l
∗
2 + 1)) = Ψ(xj(l1, l2 + 2)) = · · · = Ψ(xj(l1, n2)) = 1,

(10)

since Ψ is nondecreasing in x.
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The problem of finding l∗2 can be formulated as an instance of the single objective maximum capacity

path problem (Pollack, 1960; Hu, 1961). This idea was shown initially by Boardman and Sullivan (2021)

in the context of a similar problem involving i.i.d. components. For fixed l1, we can adapt their approach

to find l∗2. The single-objective optimization approach is based on solving the single-objective maximum

capacity path problem once for each value of l1 = 0, 1, . . . , n1, with the additional consideration that the l1

components from N1 that are UP are uncapacitated, which we represent by assigning “∞” as their capacity.

To formalize the single-objective optimization approach, independently simulate a permutation of N1 and

a permutation of N2, and record these permutations according to Equation (8). Then, for fixed l1, associate

a weight ui to each node i ∈ N according to

ui =



q2i , i ∈ N2,

0, if i ∈ N1 and q1i ≤ n1 − l1,

∞, otherwise.

(11)

In practice, we substitute∞ by a number larger than or equal to max{q2i : i ∈ N2}, such as the total number

of nodes, n, in the network. Let P denote the set of all directed paths p from s to t. The value l∗2 is then

obtained by solving the maximum capacity path (MCP) problem

v∗ = max
p∈P
{min{uk : k ∈ p}}, (12)

and setting l∗2 = n2 − v∗. In Equation (12), min{uk : k ∈ p} represents the number of nodes (within the

simulated permutation of N2) that must fail to disconnect path p, and v∗ thus represents the number of

node failures needed to cause system failure.

Pollack (1960) observed that MCP problem can be solved using a slight modification of Dijkstra’s al-

gorithm. In the case of the node-capacitated MCP problem of Equation (12), Dijkstra’s algorithm can be

applied by initializing node labels as d(i) = 0 for all i ∈ N \ {s}, and d(s) = ∞, and then updating (when
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considering an arc (i, j) leaving a node i whose label has been made permanent) according to

d(j) = max{d(j),min{d(i), uj}}. (13)

Additionally, a node label with maximum value is made permanent in each iteration instead of minimum

value, as in the case of the shortest path.

Algorithm 2 presents the pseudocode for our implementation of Dijkstra’s algorithm, which is an adap-

tation of the Dials-Dijkstra algorithm presented in Ahuja et al. (1993). Dial’s implementation of Dijkstra’s

algorithm is motivated for our problem because each label is bounded between 0 and n; thus, temporarily

labeled nodes can be stored in a sorted fashion using a small number of “bucket” sets, which allows the al-

gorithm to avoid scanning all temporarily labeled nodes at each iteration. The algorithm keeps n+1 bucket

sets numbered 0 through n, where bucket k stores all nodes with temporary label equal to k. The While loop

(lines 6–21) of Algorithm 2 identifies the greatest-numbered nonempty bucket. Once this bucket is found,

any node in it has its label made permanent and its outgoing arcs explored to propose new temporary labels

for adjacent nodes, possibly resulting in moving the nodes to a bucket set of increased number (lines 8–18).

Algorithm 3 states the SO approach. Noting that the Dials-MaxCapPath algorithm provides l∗2 for each

value of l1, steps 8–12 of Algorithm 3 populate the corresponding row Ψ(xj(l1,−)) according to Equation (10)

by simply adding 1 to any entry for which l2 > l∗2. We demonstrate SO with the following example.

Example 1. Consider the network in Figure 1(a). For this network, n = 10 nodes, N1 = {1, 3, 5, 7} is

represented in red, and N2 = {2, 4, 6, 8} is represented in blue. Suppose that in the jth replication of

Algorithm 3, we generate the permutation P1 = {5, 7, 3, 1} for N1, and P2 = {2, 4, 8, 6} for N2. Therefore,

for these permutations, node 5 is the first node to fail in N1, followed by nodes 7, 3, and 1, respectively, and

node 2 is the first node to fail in N2, followed by nodes 4, 8, and 6, respectively.

For every value of l1, the algorithm associates to each node i ∈ N a capacity ui according to Equation (11);

for l1 = 2, the algorithm obtains the network in Figure 1(b). Then, the algorithm solves the MCP. At

termination, Algorithm 2 provides a tree of maximum capacity paths rooted in s, and v∗ = 4 is the capacity

of the s-t path in this tree (blue in Figure 1(b)). Therefore, for any l2 > l∗2 (= n2 − v∗ = 4 − 4 = 0),
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Algorithm 2: Dials-MaxCapPath

1 bucket[i]← ∅, ∀i ∈ {0, 1, . . . , n}
2 d(i)← 0, ∀ i ∈ N \ {s}
3 d(s)← n
4 idx← n
5 bucket[idx]← bucket[idx] ∪ {s}
6 while idx ≥ 0 do
7 if bucket[idx] ̸= ∅ then
8 for i ∈ bucket[idx] do
9 for j ∈ Γ+

i do
10 if d(j) < min{d(i), uj} then
11 if d(j) > 0 then
12 bucket[d(j)]← bucket[d(j)] \ {j}
13 end
14 d(j)← min{d(i), uj}
15 bucket[d(j)]← bucket[d(j)] ∪ {j}
16 end

17 end

18 end

19 end
20 idx← idx− 1

21 end
22 return d(t)

the network is UP. The resulting system state matrix is shown in Table 1, where the row corresponding to

l1 = 2 is highlighted in blue. Observe that the only value of l2 for which the network is DOWN is 0, which

corresponds to l∗2 = 0, and is formatted in red.

Next, we evaluate the complexity of SO, starting by stating the complexity of Algorithm 2. The initial-

ization portion of the algorithm (steps 1–5) can be performed in O(n), but the dominating factor is the while

loop which is used by the algorithm to check buckets and update labels. Using doubly linked list as the

underlying structure of the bucket sets, each label update is performed in O(1) and since each label is made

permanent once, we examine each arc at most once, and the total work through the algorithm to update

all labels (lines 9–16) requires O(m) time. Checking all the bucket sets can be performed in O(n) since

the algorithm keeps n + 1 buckets and it checks each bucket once. Thus, the complexity of Algorithm 2 is

O(n+m). Since Algorithm 3 solves a MCP for each value of l1 and MC replication, the overall complexity

of SO is O(n1nM + n1mM), which is equal to O(n1mM) provided that n ≤ m, and hence the same time

complexity of IS.
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Algorithm 3: SO

1 Φ← 0
2 for j = 1 to M do
3 ▷ Simulate a permutation of N1 and a permutation of N2

4 for l1 = 0 to n1 do

5 ▷ Update ui, i ∈ N , according to Equation (11)

6 v∗ ← SO-MaxCapPath(G)
7 l∗2 ← n2 − v∗

8 for l2 = 0 to n2 do

9 if l2 > l∗2 then

10 ϕ(l1, l2)← ϕ(l1, l2) + 1

11 end

12 end

13 end

14 end
15 Φ← Φ/M.
16 return Φ

Table 1: System state matrix for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed with SO.

Ψ(xj(l1, l2))
l1\l2 0 1 2 3 4
0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

3.4 Bi-Objective Optimization Approach

Whereas SO solves an optimization problem for every row of the system state matrix, the bi-objective

optimization approach (BO) extends the idea of SO by solving a single bi-objective optimization problem to

evaluate the entire system state matrix in each replication.

As with the previous approaches, we begin each replication by generating q1i , i ∈ N1, and q2i , i ∈ N2

according to Equation (8). To every node i ∈ N , associate two weights according to

ue
i =


qei , i ∈ Ne,

∞, i ∈ N/Ne,

e = 1, 2. (14)

Again, in our implementation, we substitute ∞ by n, and hence the largest value of ue
i , e = 1, 2, is n.
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(a) Heterogeneous s-t network. (b) Network for l1 = 2.

Figure 1: Computation of system state matrix row corresponding to l1 = 2 using SO.

To compute the system state matrix for the jth replication, we must determine all pairs (l1, l2) for

which the network is DOWN. In BO, we determine these combinations by solving the bi-objective maximum

capacity path problem (BOMCP), which can be defined as follows. For a network with weights u1
i and u2

i

associated to each node i ∈ N , let P denote the set of all s-t paths. For p ∈ P, define capacities

c1(p) := min{u1
i : i ∈ p} and c2(p) := min{u2

i : i ∈ p}.

Similarly to SO, these capacities represent the number of failures in N1 and in N2 that disconnects path p.

Define a path p from s to i as a non-dominated s-i path if there does not exist any other path p′ from s to

i such that c1(p′) ≥ c1(p) and c2(p′) ≥ c2(p) with at least one strict inequality, and define a non-dominated

s-i point as the image of a non-dominated s-i path p under c1 and c2. Then, the BOMCP can be defined as

max
p∈P
{c1(p), c2(p)}, (15)

and a solution to this problem provides a set Ω of non-dominated s-t points (v∗1 , v
∗
2), which can be used to

derive the values of (l1, l2) for which Ψ(x(l1, l2)) = 0, for all l1 = 0, 1, . . . , n1 and l2 = 0, 1, . . . , n2. Letting

(v∗1 , v
∗
2) denote such a non-dominated point, the network is UP (i.e., Ψ(x(l1, l2)) = 1) for every point (l1, l2)

with v∗1 > n1− l1 and v∗2 > n2− l2. Furthermore, the existence of such a non-dominated point is guaranteed
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for any (l1, l2) in which Ψ(x(l1, l2)) = 1. We record this result in the following theorem.

Theorem 3.1. Ψ(x(l1, l2)) = 1 if and only if there exists a non-dominated point (v∗1 , v
∗
2) such that v∗1 > n1−l1

and v∗2 > n2 − l2.

Proof. (⇒) Suppose Ψ(x(l1, l2)) = 1. Then by definition of x(l1, l2), the system is UP when all components

i ∈ N1 with q1i > n1− l1, and all components i ∈ N2 with q2i > n2− l2 are UP, and the remaining components

in N1 and N2 are DOWN. Thus, there exists an s-t path p such that c1(p) > n1 − l1 and c2(p) > n2 − l2.

Either p is a non-dominated path or it is dominated by some other s-t path, and there exists a non-dominated

point (v∗1 , v
∗
2) with v∗1 ≥ c1(p) and v∗2 ≥ c2(p). Therefore, v∗1 > n1 − l1 and v∗2 > n2 − l2.

(⇐) Conversely, suppose that there exists a non-dominated point (v∗1 , v
∗
2) such that v∗1 > n1 − l1 and

v∗2 > n2 − l2. Then, there exists an s-t path p with capacity c1(p) = v∗1 and c2(p) = v∗2 , and hence

c1(p) > n1 − l1 and c2(p) > n2 − l2. Thus, for all i ∈ p, q1i > n1 − l1 and q2i > n2 − l2, that is, all

components i ∈ p are UP with respect to the state x(l1, l2). Because x(l1, l2) contains an s-t path of

functioning components, Ψ(x(l1, l2)) = 1.

We solve the BOMCP using the BO-MaxCapPath algorithm (given in Algorithm 4) by modifying the

“BDijkstra” bi-objective shortest path algorithm of Sedeño-Noda and Colebrook (2019) in essentially the

same way as Dijkstra’s algorithm (for single-objective shortest path) is modified for MCP.

In Algorithm 4, labels associated with each node i ∈ N contain the value of both c1(p) and c2(p) for a

candidate s-i path, i.e., a potential non-dominated s-i path. Let d1i and d2i respectively denote stored values

of c1(p) and c2(p) for the candidate s-i path, where the values d1s = d2s =∞ and d1i = d2i = 0 are initialized

in similar fashion to Algorithm 2. Let Ωi denote the set of non-dominated s-i points and, without loss of

generality, assume that the network contains a path from s to every other node i ∈ N \ {s}. Then, the

BOMCP problem satisfies the following principle of optimality: for every node i and every non-dominated

s-i point (d1, d2) ∈ Ωi, there exists a path from s to i with capacities (d1, d2) that can be composed as a

non-dominated path from s to some node j ∈ Γ−
i plus the arc (j, i). With this, after a candidate s-i path p

is determined to be a non-dominated s-i path, the values (d1i , d
2
i ) are recorded (i.e., made permanent) as a

non-dominated s-i point and a new label is proposed for each node j ∈ Γ+
i based on adding the arc (i, j) to

the end of p in similar fashion to Equation (13).
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The correctness of the BDijkstra algorithm has been proved for the bi-objective shortest path problem

(Sedeño-Noda and Colebrook, 2019). Because our extension of this algorithm is analogous to the extension

of Dijkstra’s algorithm from (single-objective) shortest path to MCP, we have not proven correctness here.

Besides the previously mentioned initialization of d1i and d2i , i ∈ N , the differences between Algorithm 4 and

BDijkstra are as follows: (i) Algorithm 4 extracts labels from the heap based on the lexicographic maximum

key (d1i , d
2
i ) instead of the lexicographic minimum key used by BDijkstra; (ii) Algorithm 4 proposes new

candidate labels for a node j based upon the minimum c1 and c2 capacities, respectively, in the non-dominated

s-j path instead of adding the lengths corresponding to each objective of each arc in the non-dominated s-j

path, as in BDijkstra; and (iii), Algorithm 4 accepts a new candidate label for node j if it lexicographically

increases (instead of lexicographically decreases as in BDijkstra) the current label and is not dominated by

a permanent label for node j. We now explain the extension of BDijkstra for BOMCP.

Algorithm 4: BO-MaxCapPath

1 Ni ← 0, d1i ← 0, d2i ← 0, InH[i] ← False, i ∈ N \ {s}
2 Ns ← 0, d1s ←∞, d2s ←∞, l← (s,∞,∞,−,−)
3 insert(l, H); InH[s]← True

4 while H ̸= ∅ do
5 l∗ ← find-max(H), delete-max(H)

6 d1i∗ ← 0, d2i∗ ← 0 // i∗ is the node with label l∗

7 Ni∗ ← Ni∗ + 1, L[i∗][Ni∗ ]← l∗, InH[i∗]← False

8 lnew ← NewCandidateLabel(i∗, l∗)

9 if lnew ̸= Null then

10 insert(lnew, H), InH[i∗] ← True

11 d1i∗ ← lnew.d1, d2i∗ ← lnew.d2

12 end

13 RelaxationProcess(i∗, H, l∗)

14 end
15 return L[t]

Following the notation of Sedeño-Noda and Colebrook (2019), the data structure used in Algorithm 4 to

store the non-dominated points for i ∈ N is denoted by L[i]. Since multiple non-dominated points may be

associated with each node i ∈ N , L[i] is dynamically increased by one point each time a new non-dominated

point associated with i is found. The total number of non-dominated points associated with i, Ni, is not

known until termination. At termination, L[i] contains non-dominated points L[i][1], L[i][2], . . . , L[i][Ni],
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Algorithm 5: NewCandidateLabel(i∗, l∗)

1 d1 ← 0, d2 ← 0; lnew ← Null // Γ−
i is the set of predecessors of node i

2 for j ∈ Γ−
i∗ do

3 for l ∈ L[j] do

4 f1 ← min{l.d1, u1
i∗ , u

1
j}

5 f2 ← min{l.d2, u2
i∗ , u

2
j}

6 if f1 > d1 or f1 = d1 and f2 > d2 // lexmax cand label

7 then

8 if f1 < l∗.d1 and f2 > l∗.d2 // non-dom cand label

9 then

10 d1 ← f1; d2 ← f2

11 lnew ← (i∗, d1, d2, j, r) // r is the position of l in L[j]

12 end

13 end

14 end

15 end
16 return lnew

Algorithm 6: RelaxationProcess(i∗, H, l∗)

1 for j ∈ Γ+
i∗ do

2 f1 ← min{l∗.d1, u1
i∗ , u

1
j}

3 f2 ← min{l∗.d2, u2
i∗ , u

2
j}

4 if f1 > d1j or f1 = d1j and f2 > d2j // Relaxation (i∗, j)

5 then

6 if Nj = 0 or f1 < L[j][Nj ].d
1 and f2 > L[j][Nj ].d

2 // non-dom. label

7 then

8 d1j ← f1; d2j ← f2

9 l← (j, d1j , d
2
j , i

∗,Ni∗) // Ni∗ is the position of l∗ in L[i∗]

10 if InH[j] = False then
11 insert(l, H)

12 InH[j] ← True

13 end
14 else
15 increase-key(l, H)
16 end

17 end

18 end

19 end
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stored in lexicographically decreasing order. Non-dominated points are represented by labels of the form

(i, d1, d2, j, r), (16)

where i denotes the node to which the non-dominated point is associated, d1 and d2 denote, respectively the

capacity of node i for the first and second objectives, j denotes the predecessor of node i in the respective non-

dominated path, and r denotes the position in L[i] of the non-dominated label j that allows the corresponding

non-dominated path to i to be obtained.

As in the BDijkstra algorithm of Sedeño-Noda and Colebrook (2019), Algorithm 4 maintains a heap, H,

that stores at most one candidate label for each node i ∈ N , and therefore has a maximum size of n. Every

label has an associated key given by the pair (d1, d2). The candidate label l ∈ H associated with node i is

not in L[i] since a label is stored in L only when the label becomes permanent. Similarly to BDijkstra, our

algorithm maintains the invariant that the key of a label l in H associated with node i is not dominated

by the key of any label in L[i], for all i ∈ N . Additionally, the key of the candidate label for node i is the

lexicographic maximum among all paths to node i that can be created by a known non-dominated path to

some predecessor node j ∈ Γ−
i plus the arc (j, i). The heap performs the following basic operations on labels:

find-max(H), delete-max(H), insert(l, H), and increase-key(l, H), and labels are extracted from the heap in

lexicographic maximum order of their keys, i.e., a label l∗ = (i, d1, d2, j, r) is extracted from the heap if, for

any other label l in the heap, l∗.d1 > l.d1 or l∗.d1 = l.d1 and l∗.d2 > l.d2.

For a label l∗ associated with a node i∗ to become permanent (i.e., recording its key as a non-dominated

s-i∗ point) it has to satisfy two conditions: (1) its key must not be dominated by the key of any label already

in L[i∗]; and (2) there does not exist a non-explored path from s to i∗ whose key dominates the key of l∗.

Item (1) is satisfied by any label in H at any time by the invariant already discussed. Due to the label

update procedures NewCandidateLabel (Algorithm 5) and RelaxationProcess (Algorithm 6), it can be shown

that item (2) is satisfied by a label l∗ extracted from the heap. Therefore, the label l∗ extracted from the

heap in an iteration becomes permanent and it is added to the end of L[i∗]. In this way, the key of a new

permanent label associated with a node i∗ is non-dominated by and lexicographically smaller than any other

permanent label in L[i∗].
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With the exception of the first label, (s,∞,∞,−,−), any other label is generated by either NewCandi-

dateLabel or RelaxationProcess from a permanent label. When a label l∗ associated with a node i∗ ∈ N is

made permanent, NewCandidateLabel determines whether there is another explored path to node i∗ that is

not dominated by any point already in L[i∗], and RelaxationProcess explores all s-j paths by extending the

non-dominated s-i∗ path corresponding to l∗ by a single arc (i∗, j), where j ∈ Γ+
i∗ .

If NewCandidateLabel finds a new s-i∗ path and/or RelaxationProcess finds a new non-dominated s-j path,

j ∈ Γ+
i∗ , a new label is created and inserted into the heap. Furthermore, since the labels are made permanent

in decreasing order and a permanent label associated with a node i∗ is added to the end of L[i∗], in the

dominance test for a new label l∗ it is only necessary to check whether the key of the last label in L[i∗]

dominates the key of l∗.

Solving the BOMCP provides the set of non-dominated points Ω. Then, we can update Φ by looping

over Ω and adding 1 to every entry that satisfies the condition v∗1 > n1 − l1 and v∗2 > n2 − l2. Algorithm 7

states the BO approach.

Algorithm 7: BO

1 Φ← 0
2 for j = 1 to M do
3 ▷ Simulate a permutation of N1 and a permutation of N2

4 ▷ Update ui, i ∈ N , according to Equation (14)

5 Ω← BO-MaxCapPath(G) // Ω stores all (v∗1 , v
∗
2) points

6 for (v∗1 , v
∗
2) ∈ Ω do

7 for l1 = 0 to n1 do

8 for l2 = 0 to n2 do

9 if v∗1 > n1 − l1 and v∗2 > n2 − l2 then

10 ϕ(l1, l2)← ϕ(l1, l2) + 1

11 end

12 end

13 end

14 end

15 end
16 Φ← Φ/M.
17 return Φ

We now establish the complexity of Algorithm 4. We first analyze the work performed for every iteration

of the while loop. When a node label l∗ is made permanent, the algorithm performs a find-max operation in
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O(1), a delete-max operation in O(log n), a series of assignment operations each having complexity O(1), and,

when the label returned by NewCandidateLabel is not Null, the algorithm performs an insert in O(log n) and

another series of assignment operations in constant time. The work performed in one iteration of the while

loop is therefore O(log n) plus the complexity of NewCandidateLabel and RelaxationProcess. The algorithm

performs an iteration of the while loop Ni times for every i ∈ N , and since Ni ≤ n1 + 1 (because every non-

dominated point must have a different value of d1i ), the work performed for all nodes is O(n1n log n) plus

the complexity of NewCandidateLabel and RelaxationProcess. In every iteration, function NewCandidateLabel

performs a series of comparisons and assignments in constant time |L[j]| ≤ Nj times for every j ∈ Γ−
i . Because

NewCandidateLabel is called exactly Ni times for each node (i.e., once for every label made permanent), the

total work for node i is O(Ni

∑
j∈Γ−

i
Nj) = O(n1

∑
j∈Γ−

i
n1) = O(n2

1|Γ−
i |). Therefore, the total time due to

NewCandidateLabel is O(
∑

i∈N n2
1|Γ−

i |) = O(n2
1

∑
i∈N |Γ

−
i |) = O(n2

1m), noting that
∑

i∈N |Γ
−
i | = m.

In each iteration, for every j ∈ Γ+
i , RelaxationProcess performs a sequence of constant time opera-

tions and either an insert or increase-key operation in the worst case with complexity O(log n). Like

the NewCandidateLabel, RelaxationProcess is called Ni times for each i ∈ N , which amounts to a to-

tal complexity of O(
∑

i∈N
(
Ni log n|Γ+

i |
)
). Noting that Ni = O(n1) and

∑
i∈N |Γ

+
i | = m, this com-

plexity reduces to O(n1m log n). Comparing the results above, the overall complexity of Algorithm 4 is

O(nn1 log n+n2
1m+n1m log n), which is O(n2

1m+n1m log n) provided that n < m. The overall complexity

of BO is therefore O(n2
1mM+ n1m log nM). We illustrate BO with the following example.

Example 2. Consider the network in Figure 2(a). For this network, n = 10, N1 = {1, 3, 5, 7} and N2 =

{2, 4, 6, 8}. Suppose that in the jth replication, the algorithm generates the permutations P1 = {5, 7, 3, 1}

and P2 = {2, 4, 8, 6} for N1 and N2, respectively. The algorithm then updates the values of u1
i and u2

i , i ∈ N ,

according to Equation (14) (see Figure 2(b)), and solves the corresponding BOMCP problem. The solution

of the BOMCP problem shows that there are three non-dominated s-t paths (marked in blue in Figure 2(b)):

p1 = s - 4 - 8 - t, p2 = s - 1 - 6 - t, and p3 = s - 3 - 7 - t, with respective non-dominated points (∞, 2), (4, 4),

and (2,∞); these are the points stored in Ω. The algorithm then loops over these points populating the

survival signature matrix. Consider the first point stored in Ω, (∞, 2). The network is UP for every point

(l1, l2) such that ∞ > 4− l1 and 2 > 4− l2, that is, the network is UP for l1 > −∞ (l1 ≥ 0) and l2 > 2 (this
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(a) Heterogeneous s-t network. (b) Network after the updating of ui.

Table 2: System state matrix for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed with BO.

Ψ(xj(l1, l2))
l1\l2 0 1 2 3 4
0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

area is outlined in red in Table 2). Similarly, point (v∗1 , v
∗
2) = (4, 4) (yellow) and (v∗1 , v

∗
2) = (2,∞) (blue).

The brown region is where the three other regions overlap.

4 Computational Experiments

We implemented the four methods in section 3 and published the code at the dblsBR/Heterogeneous_

Signature repository. All algorithms were implemented in C++, and all experiments were performed on

an Intel® Core i7-1165G7 CPU laptop with a 2.80 GHz processor and 16 GB RAM running on Windows

10 OS. To validate our methods, we verified that (i) the estimated survival signature produced by all four

methods were equivalent in every test instance; and (ii) the methods produced the (exact) survival signature

for small-scale networks (such as the bridge system from Patelli et al. (2017); see Figure 3 for a diagram and

Table 3 for the corresponding survival signature) when the MC simulation was configured to generate each

pair of permutations (one from N1 and one from N2) once.

In what follows, we compare the run time of each approach using a variety of networks of different sizes
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Figure 3: Bridge system from Patelli et al. (2017), where N1 = {1, 2, 3} and N2 = {4, 5, 6}

Table 3: Survival signature for the bridge system of Figure (3).

l1\l2 0 1 2 3
0 0 0 0 0
1 0 0 1/9 1/3
2 0 0 4/9 2/3
3 1 1 1 1

and with varying ratios of n1/n2. Initially, we evaluate how the algorithms perform with respect to a varying

number of replications and verify that their running time is approximately linearly with M. For this round of

experiments, we estimate the survival signature of two medium-sized networks, adapted from Sebastio et al.

(2014), for M = 100, 500, 1000, 5000, 10000 replications. The first network has n = 59 nodes, m = 142 arcs,

and is composed of three replicas of the 1973 Arpanet network (see Figure 4(a)). We adapted this network

in the following fashion: the 57 nodes in N \ {s, t} (numbered from 1 to 57) are divided into two classes

of nodes such that n1 = 28 first even-numbered nodes are assigned to class 1 (i.e., 2, 4, . . . , 56) and the

remaining n2 = 29 nodes are assigned to class 2. We then record the time each algorithm needs to estimate

the survival signature and divide the respective time by the corresponding number of replications to obtain

the rates (in seconds per replication) shown in Table 4.

(a) System composed of three replicas of 1973 Arpanet. (b) Typical airplane electrical system.

Figure 4: Arpanet network and airplane electrical system adapted from Sebastio et al. (2014).
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The second network used is a typical electrical system of an airplane and is depicted in Figure 4(b). The

airplane system has n = 82 nodes and m = 268 arcs. We divide the nodes in N \ {s, t} into N1 and N2

such that n1 = 40 and n2 = 40. As before, we record the time required by each algorithm to complete the

survival signature estimation and divide this time by M to obtain the replication rates shown in Table 5.

Table 4: Arpanet System with n = 59, n1 = 28, n2 = 29, m = 142.

All entries are given in seconds per replication
M = 100 M = 500 M = 1000 M = 5000 M = 10000

Naive 0.0088 0.0089 0.0082 0.0082 0.0080
IS 0.0006 0.0005 0.0006 0.0006 0.0005
SO 0.0006 0.0007 0.0007 0.0006 0.0006
BO 0.0003 0.0003 0.0003 0.0003 0.0003

Table 5: Airplane electrical system with n = 82, n1 = 40, n2 = 40, m = 268.

All entries are given in seconds per replication
M = 100 M = 500 M = 1000 M = 5000 M = 10000

Naive 0.0360 0.0354 0.0353 0.0375 0.0352
IS 0.0017 0.0018 0.0018 0.0016 0.0017
SO 0.0017 0.0015 0.0015 0.0015 0.0015
BO 0.0008 0.0008 0.0008 0.0007 0.0007

From Tables 4 and 5, we observe that the rate of each algorithm is approximately constant with a varying

number of replications, and that their run time increases approximately linearly with an increase in M. This

implies that we can obtain a good estimate of the total run time of an algorithm with respect to a system

for a large M by running a small number of iterations, obtaining the rate, and multiplying it by M. Tables

4 and 5 also show the superiority of BO over the other three methods. Between IS and SO, neither seems to

dominate the other, while Naive was at least one order of magnitude slower than the other algorithms.

Using the same networks, we next evaluate the effect of varying the size of the classes of nodes, N1 and

N2, on the running time. For this round of experiments, we fix M at 5000 replications and estimate the

survival signature for different combinations of n1/n2. For the Arpanet system, we consider the following

combinations of n1/n2: 5/52, 12/45, 20/37, and 28/29. For the Airplane system, we consider the following

combinations of n1/n2: 10/70, 20/60, 30/50, and 40/40. The results shown in Tables 6 and 7 reaffirm BO

as the fastest method and suggest that BO is the most robust against variations in the ratio n1/n2.

To further investigate the robustness of the algorithms, we estimate the survival signature of a large-scale,

generally structured network as described below. We generate a random geometric graph (RGG) with 350
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Table 6: Arpanet system for fixed M = 5000 and different values of n1 and n2.

All entries are given in seconds per replication
n1 = 5, n2 = 52 n1 = 12, n2 = 45 n1 = 20, n2 = 37 n1 = 28, n2 = 29

Naive 0.0022 0.0042 0.0056 0.0082
IS 0.0001 0.0003 0.0004 0.0006
SO 0.0001 0.0003 0.0004 0.0006
BO 0.0001 0.0002 0.0002 0.0003

Table 7: Airplane system for fixed M = 5000 and different values of n1 and n2.

All entries are given in seconds per replication
n1 = 10, n2 = 70 n1 = 20, n2 = 60 n1 = 30, n2 = 50 n1 = 40, n2 = 40

Naive 0.0125 0.0199 0.0243 0.0375
IS 0.0005 0.0008 0.0010 0.0016
SO 0.0004 0.0007 0.0009 0.0015
BO 0.0003 0.0005 0.0005 0.0007

nodes according to the following procedure: in the X-Y plane, we locate node s with coordinates xs = 0 and

ys = 10 and node t with coordinates xt = 10 and yt = 0. For any other node i ∈ N \ {s, t}, we randomly

generate coordinates xi and yi between 0 and 10 according to a uniform distribution, and we create and arc

from node i to node j ∈ N if and only if the Euclidean distance between i and j is smaller than or equal to a

parameter d. For this example, we set d = 1.5 and the procedure generated m = 7446 arcs. Notice that this

procedure does not prevent the creation of cycles, which adds another layer of generality to the RGG. We

then assign nodes in N \ {s, t} to each class, where the first n1 nodes are assigned to N1, and the remaining

n2 nodes are assigned to N2. We estimate the survival signature of this network for M = 5000 replications

and varying values of n1/n2. Figure (5) shows the resulting network for n1 = 149 and n2 = 199.

Figure 5: Network with n = 350, where n1 = 149, n2 = 199, and m = 7446 arcs.
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Table 8 shows the results of the computational experiments performed with this RGG. For the 350-node

RGG, the superiority of BO is highlighted in terms of both running time and robustness. In terms of run

time rates, BO becomes orders of magnitude faster than the other approaches in most cases with only SO

competing in the same order of magnitude but still around four times slower than BO. The BO approach is

also the most robust when we increase n1 as shown in Table 8.

Table 8: Random Geometric Graph system with 350 nodes with d = 1.5 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 1.5, m = 7446, density=0.06

n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 3.8186 8.4882 9.6679
IS 0.1662 0.2526 0.3143
SO 0.0239 0.0431 0.0545
BO 0.0078 0.0111 0.0121

Using the same procedure, we generated two additional RGGs by varying the value of d to evaluate the

performance of the algorithms with respect to generally structured networks with varying density. Notice

that the density of the RGG discussed above (created with d = 1.5) is approximately 0.06. We set d = 3.0

and ran the procedure again; the resulting RGG has 25412 arcs and a density of 0.21. Lastly, we increased

the value of d to 4.5 and created a third RGG, this one with 49208 arcs and a density of 0.40. The results

for the RGGs with d = 3.0 and d = 4.5 are shown in Tables 9 and 10.

Table 9: Random Geometric Graph system with 350 nodes with d = 3.0 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 3.0, m = 25412, density=0.21

n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 6.3789 10.7940 13.0430
IS 1.6292 2.7340 3.3182
SO 0.0394 0.0704 0.0962
BO 0.0116 0.0116 0.0121

Table 10: Random Geometric Graph system with 350 nodes with d = 4.5 and different values of n1 and n2.

All entries are given in seconds per replication
RGG for d = 4.5, m = 49208, density=0.40

n1 = 49, n2 = 299 n1 = 99, n2 = 249 n1 = 149, n2 = 199
Naive 9.871 16.1800 21.1100
IS 7.5664 10.3460 12.1000
SO 0.0603 0.1088 0.1498
BO 0.0177 0.0180 0.0185
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Tables 8, 9 and 10 reinforce the dominance of BO over the benchmarks and highlight its robustness

against variations in n1 and network density. In this round of experiments, SO is markedly faster than IS,

whereas in the previous experiments this difference was not clear.

As our final objective in this section, we evaluate the performance of the algorithms in a realistic, large-

scale network system. For this task, we estimate the survival signature of the 2000-bus power system, which

has 4000 nodes and 29336 arcs and includes cycles and self-loops. This is a synthetic electric grid model

maintained by Texas A&M Smart Grid center (electricgrids.engr.tamu.edu); see (Birchfield et al., 2017a,b,

2018) for more information. We adapted the network by partitioning the nodes into two classes. Using BO,

SO, and IS, we estimated the survival signature of the 2000-bus power system with M = 250 replications for

varying values of n1/n2. Because Naive required in excess of 10 hours per replication, we excluded it from

this round of computational experiments. Table 11 shows the result for the other three algorithms.

Table 11: TAMU SmartGridCenter 2000-bus power system.

All entries are given in seconds per replication
n1 = 999, n2 = 2999 n1 = 1499, n2 = 2499 n1 = 1999, n2 = 1999

IS 5.4018 5.7626 6.3502
SO 27.086 33.594 49.505
BO 0.1863 0.1867 0.1983

Table 11 confirms the results of previous experiments and highlights the advantages of BO over the other

the benchmark methods. The BO algorithm scaled well and in the worst case (n1 = 1999, n2 = 1999) yielded

a rate of 0.1983 seconds per iteration, demonstrating that BO is well-suited to handle large-scale systems.

For instance, for the same setting but changing M to a more realistic number such as 10000 replications, BO

would complete the survival signature estimation in less than one hour. By comparison, IS yielded a rate of

6.35 seconds per iteration in the worst case and would take more than 17 hours to run 10000 replications.

As a secondary point, it is interesting to note that in the RGG experiments (Tables 8, 9 and 10), SO

outperformed IS by a considerable margin, whereas in the 2000-bus power system experiments, SO fared

markedly worse than IS. Although in both cases the network considered was a large-scale system, the density

in all three RGG cases were considerably larger than the density of the 2000-bus power system, which is

approximately 0.0018. This result suggests that SO may not perform well with massive but sparse networks,

which is the case for many real systems. We did not pursue further investigation in this direction since BO
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decisively outperformed both SO and IS for every instance of considerable size.

5 Considerations and Future Research

In this paper, we proposed a bi-objective optimization-based MC method (which we refer to as BO) to

estimate the two-terminal survival signature of networks with two component classes. To the best of our

knowledge, this is the first work to point out the relationship between survival signature computation and

multi-objective optimization. In addition, we discussed three alternative approaches to estimate the two-

terminal survival signature within a MC framework without exploiting the relation to multi-objective opti-

mization. We conducted extensive computational experiments to compare the performance of the methods

in terms of run time and robustness. Although IS and SO have better worst-case complexity, the experiments

revealed BO to be the fastest and the most robust method. The experiments also showed that BO is well-

suited to estimate the survival signature of realistic, large-scale systems, while the other three approaches

become unpractical as the size of the network becomes large.

This work contributes to the network reliability literature from both theoretical and practical perspectives.

From a theoretical perspective, the possibility of estimating the survival signature by solving a multiobjective

network optimization problem, and the efficiencies gained by doing so, indicates an interesting path for

developing efficient algorithms for reliability estimation. From an practical perspective, we have shown that

BO is well-suited to estimate the survival signature of realistic, generally structured systems in a reasonable

amount of time even for systems with thousands of nodes and arcs.

Interesting future research directions branching from this work includes:

1. Generalizing our approach to estimate the two-terminal survival signature for networks with more than

two component classes. Recent developments for multi-objective shortest path problems (de las Casas

et al., 2021) may provide a natural extension to our bi-objective optimization-based MC approach.

2. Generalizing our approach to multi-state systems. Whereas we assume binary-state components and a

binary-state system, the concept of signatures has been generalized to multi-state systems that present

the possibility of non-binary performance levels (Eryilmaz and Tuncel, 2016; Qin and Coolen, 2022;
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Yi et al., 2023). Extending the multi-objective optimization approach may enable multi-state survival

signatures to be utilized for larger-scale systems.

3. Generalizing our approach to other reliability metrics. Although two-terminal reliability underlies

many network reliability problems, there is a need to contemplate other network reliability metrics

such as K-terminal reliability and coverage metrics. Extending our approach may provide an efficient

way to estimate the survival signature for a broader variety of systems.
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M. Lê, M. Walter, and J. Weidendorfer. A memory-efficient bounding algorithm for the two-terminal relia-

bility problem. Electronic Notes in Theoretical Computer Science, 291:15–25, 2013.

S. Sebastio, K. S. Trivedi, D. Wang, and X. Yin. Fast computation of bounds for two-terminal network

reliability. European Journal of Operational Research, 238:810–823, 2014.

C. Srivaree-ratana, A. Konak, and A. E. Smith. Estimation of all-terminal network relibility using an artificial

neural network. Computers and Operations Research, 29:849–868, 2002.

F. Altiparmak, B. Dengiz, and A. E. Smith. A general neural network model for estimating telecommunica-

tions network reliability. IEEE Transactions on Reliability, 58(1):2–9, March 2009.

Z. Zhang and F. Shao. A diameter-constrained approximation algorithm of multistate two-terminal reliability.

IEEE Transactions on Reliability, 67(3):1249–1260, 2018.

K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese. The cross-entropy method for network reliability estima-

tion. Annals of Operations Research, 134:101–118, 2005.

A. Heidarzadeh, A. Sprintson, and C. Singh. A fast and accurate failure frequency approximation for k-

terminal reliability systems. IEEE Transactions on Reliability, 67(3):933–950, 2018.

G. Cristescu and V.-F. Dragoi. Efficient approximation of two-terminal networks reliability polynomials using

cubic splines. IEEE Transactions on Reliability, 70(3):1193–1203, sep 2021. doi: 10.1109/tr.2021.3049957.

G. S. Fishman. A comparison of four Monte Carlo methods for estimating the probability of s-t connectedness.

IEEE Transactions on Reliability, 35(2):145–155, June 1986.

J. E. Ramirez-Marquez and D. W. Coit. A monte-carlo simulation approach for approximating multi-

state two-terminal reliability. Reliability Engineering & System Safety, 87(2):253–264, feb 2005. doi:

10.1016/j.ress.2004.05.002.

J. E. Ramirez-Marquez and B. A. Gebre. A classification tree based approach for the development of

minimal cut and path vectors of a capacitated network. IEEE Transactions on Reliability, 56(3):474–487,

September 2007.

37



R. E. Stern, J. Song, and D. B. Work. Accelerated monte carlo system reliability analysis through machine-

learning-based surrogate models of network connectivity. Reliability Engineering & System Safety, 164:

1–9, aug 2017. doi: 10.1016/j.ress.2017.01.021.
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