Distributing workload of daily driver assignment using linear programming with historical data

Latrobe - Last-Mile Delivery

Latrobe LLC, is a multi-dimensional firm based in Memphis, TN with divisions in manuacturing consulting, light assembly, and packagng and shipping operations. The division that focuses on shipping acts as a third-party Amazon Delivery Service Partner (DSP) improve their current work scheduling and the route to driver assignment with the use of a improve their current work scheduling and the route to driver assignment with the use of a improve the daily driver schedule once they receive it from Amazon to reduce fatigue.

Balancing Driver Workload

The decision support tool is based on an optimization model whose objective function is to minimize deviation from average packages weighted by hours for each driver. This minimize deviation from average packages weighted by hours for each driver. This
optimization model is run by Python and integrated using Power BI. This integrated system optimization model is run by Python and integrated using Power BI. This integrated system
would be run every morning by Latrobe's Operations Manager to improve driver assignments. The assumption is that it would reduce physical and mental fatigue as well as risk for injury in the process.

Optimization Model For Work Scheduling

The parameters define the number of packages associated with each driver during the given number of days. The span of days to be considered will include the current day as well as the
last seven days. A driver will have a parameter that defines the cumulative packages and hours in the past seven days and is updated daily Similarly, there are parameters that define the hours and packages of a route. Each route must have one driver. Each driver must have one route. The objective function is to minimize the sum of the drivers' deviation from the average number of packages weighted by hours across all drivers. This approach assumes that creating a more balanced workload reduces driver fatigue. The model also assumes that the
number of packages assigned to each driver is one of the main causes of fatigue due to a driver needing to carrying more packages, make more stops, and make more trips from the van.
Parameters:
$d=$ the index for the driver
$|D|$ the set of drivers
$j=$ the index for the route
$P_{d}=$ the number of historical packages for driver d
$p_{j}=$ the number of packages on route j
$H_{d}=$ the number of historical hours for driver d $h_{i}=$ the number of hours on route j
$=\left\{\begin{array}{l}\text { if } d=j \text { because this is a default assignment } \\ 1 \text { otherwise }\end{array}\right.$ $Y_{d j}=\left\{\begin{array}{l}1 \text { otherwise }\end{array}\right.$
$X_{d j}=\left\{\begin{array}{l}1 \text { if driver } d \text { is assigned to route } \\ 0 \text { otherwise }\end{array}\right.$
$Y_{d j}$ is binary $\forall d \forall j$
$N=$ the penalty value

$X_{a j}$ is binary $\forall d \forall j$

Constraints:
$\begin{array}{ll}\sum_{\sum_{j}^{p} X_{d j}=1 \forall j} & \text { only one driver may be assigned to each route } \\ \sum_{j} X_{d j}=1 \forall d & \text { only one route may be assigned to each driver }\end{array}$ $\sum_{j} x_{d j}=1 \forall d \quad$ only
objective Function:
$W_{\text {avg }}=\left(\sum_{d \in D}^{D} P_{d}+\sum_{j \in \mathcal{J}}^{\prime} p_{j}\right) /\left(\sum_{d \in D}^{D} H_{d}+\sum_{j \in j}^{1} h_{j}\right)$

Minimize $\sum_{j} \sum_{d}^{D} C_{d j} * X_{d j}+Y_{d j} * N$
Applying our full set of changes to the initial assignment reduces work imbalance by an average of 38% compared to baseline. The same number of packages are delivered by the same number
of drivers. What changes in our assignment is that work is more evenly divided between drivers of drivers. What changes in our assignment is that work is more evenly divided between drivers
while accounting for differences in full-time and part-time drivers. This should reduce fatigue, make work schedules fairer, has no direct costs, and may even improve productivity.

Python and Power BI Implementation

This flow chart demonstrates how the Python Programming Structures interact to generate driver assignments. First, the data is pre-processed and is arranged where the relevant
information is input into the parameters. This information includes historic driver data information is input into the parameters. This information includes historic driver data on
packages for the last seven days and route data on packages for the current day. Next, we read this data into Python as a CSV file. Before running the objective function in Python, we must run the parameters using Pandas. Once we successfully ran the parameters, the mathematical optimization computations are made using the functions contained in the SciPy Library to establish assignments for the drivers. Finally, the Python script is run and displayed in Power BI.
ilil) Power BI

Power BI Output Visualizations

Power BI is used to run the Python script and display the output from the optimization model. The main visual that is displayed in Power BI is a table including the default route to driver assignment, the optimal route to driver assignment, along with additional information on the
routes themselves. These visuals help the Operations Manager understand what changes were routes themselves. These visuals help the Operations Manager understand what changes were
made and why those changes were made. These Power BI reports are interactive, allowing the user to select a driver or a route and view information specific to that assignment.

